Suresh TechLabs provides professional research and paper publication support for scholars and PhD students. We assist with journal paper writing, editing, formatting, and plagiarism-free content development for UGC-CARE, Scopus, SCI, and Web of Science journals. We guide researchers through topic selection, literature review, methodology design, data analysis, implementation, and ensure originality, quality, confidentiality, and timely delivery.

Testimonials : 03

Unmanned Aerial Vehicles (UAVs) have grown into a more powerful type of data transmission due to this rapid progress of evolution of wireless communication technology. In addition, UAVs have been proven to be effective in a variety of applications, including intelligent transport, disaster risk management, surveillance, and environmental monitoring. When UAVs are deployed randomly, however, they can effectively accomplish challenging tasks because of the UAVs’ has low battery capacity, quick mobility, and dynamic in nature orientation. Due to this reason, a new technique must be designed for an optimal energy efficient UAV clustering as well as data routing protocols. In this work proposes a new hybrid model of Emperor penguin-based Generalized Approximate Reasoning Based Intelligent Control (EP-GARIC) cluster-based network topology. Furthermore, the optimal routing function is achieved by the proposed Artificial Jellyfish Optimization (AJO). The implementation of this research is carried out using Network Simulator (NS2). The simulation results displays the effective performance of the suggested approach in terms of reduced energy consumption, improved packet delivery ratio, reduced loss, and so on over compared to the conventional approaches. 

Testimonials : 05

Unmanned Aerial Vehicles (UAVs) have evolved into a potent form of data transmission, benefiting from the rapid advancements in wireless communication technology. Furthermore, UAVs have demonstrated their effectiveness across diverse applications, such as intelligent transportation, disaster risk management, surveillance, and environmental monitoring. When UAVs are deployed randomly, however, they can effectively accomplish challenging tasks because of the UAVs’ has low battery capacity, quick mobility, and dynamic in nature orientation. Due to this reason, a new technique must be designed for an optimal energy efficient UAV clustering as well as data routing protocols. In this work proposes a new hybrid model of Emperor penguin-based Generalized Approximate Reasoning Based Intelligent Control (EP-GARIC) cluster-based network topology. Moreover, the proposed model achieves the most efficient routing function through the utilization of the novel Artificial Jellyfish Optimization (AJO) technique. The execution of this study is conducted within the Network Simulator (NS2) environment. The outcomes of the simulations distinctly demonstrate the notable effectiveness of the suggested methodology. This is evidenced by a marked decrease in energy consumption, a substantial improvement in packet delivery ratio, a noteworthy reduction in losses, and other comparable metrics when contrasted with established conventional methods. Keywords—Clustering, Neural Network, Fuzzy method, Energy Efficiency, Parameter Tuning.

Testimonials : 06

Tropical cyclones (TC) are among the worst natural disasters, that cause massive damage to property and lives. The meteorologists track these natural phenomena using Satellite imagery. The spiral rain bands appear in a cyclic pattern with an eye as a center in the satellite image. Automatic identification of the cyclic pattern is a challenging task due to the clouds present around the structure. Conventional approaches use only image data to detect the cyclic structure using deep learning algorithms. The training and testing data consist of positive and negative samples of TC. But the cyclic structure's texture pattern makes it difficult for the deep learning algorithms to extract useful features. This paper presents an automatic TC detection algorithm using optical flow estimation and deep learning algorithms to overcome this draw-back. The optical flow vectors are estimated using the Horn-Schunck estimator, the Liu-Shen estimator, and the Lagrange multiplier. The deep learning algorithms take the optical flow vectors as input during the training stage and extract the features to identify the cyclone's circular pattern. The software used for experimental analysis is MATLAB 2021a. The proposed method increases the accuracy of detecting the cyclone pattern through optical flow vectors compared to using the pixel intensity values. By using proposed method 98% of accuracy will be achieved when compared with the existing methods.

Testimonials : 07

significant subfields in “Synthetic Aperture Radar (SAR)” research is considered to be target detection. Numerous studies have been conducted on target identification, with the majority of them favoring filter-oriented methods. The fundamental goal of radar systems is to “detect moving targets on the ground.” Decomposing a complex matrix into a structured sparse matrix and a low-rank matrix is a fundamental mathematics issue. Surveillance and reconnaissance rely heavily on “Ground Moving Target Indication (GMTI),” but it's not a simple task. The SAR ATI was first developed for calculating the radial velocity of ground-moving objects. Yet, overlapping stationary clutter can corrupt the recorded differential phase, resulting in mistakes in position and velocity calculations. The main concept of this paper is to propose a novel “Adaptive Simplified Fractional Fourier Transform (A-SFrFT)” using the intelligent meta-heuristic improvement. This adaptive SFrFT efficiently estimates the “Doppler parameters of the moving targets.” The improved “Harris Hawks Optimization (HHO)” termed Trio Updating HHO (TU-HHO) is used as the meta-heuristic algorithm that enhances the performance of the SFrFT-based target estimation. The mathematical analysis and simulation findings show that the suggested methods recommended strategy is successful.